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1. Augustin-Louis Cauchy, 1821

Page 456, formula (31):0@ nX
i=1

a2i

1A0@ nX
i=1

b2i

1A
=

0@ nX
i=1

aibi

1A2 + X
1�i<j�n

(aibj � ajbi)2.

Consequence: Cauchy-Buniakovski-Schwarz Inequality and
its equality case.



2. History

A particular form of Lagrange�s identity: Fibonacci in
1225 in his Liber Quadratorum (Book of Squares):�
a21 + a

2
2

� �
b21 + b

2
2

�
= (a1b1 + a2b2)

2 + (a1b2 � a2b1)2

= (a1b1 � a2b2)2 + (a1b2 + a2b1)2 :
For integer values of the variables, this means that the
product of sums of squares is again a sum of squares (a
fact that originates to Book 13, Problem 19, in Arith-
metica of Diophantus of Alexandria):

(12 + 42)(22 + 72) = 302 + 12 = 262 + 152:

Modern proof via complex number multiplication:

ja1 + ia2j2 jb1 + ib2j2 = j(a1 + ia2) (b1 + ib2)j2 :

Brahmagupta (598�668):
�
a21 �Na22

� �
b21 �Nb22

�
equals

(a1b1 +Na2b2)
2 �N (a1b2 + a2b1)

2

Bhaskara II in 1150 solved Pell�s equation x2�Ny2 = 1:



3. Lagrange�s Algebraic Identity

1773, Quelques problémes sur les pyramides triangulaires,
p. 663, lines 6-8:0@ 3X

i=1

a2i

1A0@ 3X
i=1

b2i

1A
=

0@ 3X
i=1

aibi

1A2 + X
1�i<j�3

(aibj � ajbi)2.

In other words

kuk2 kvk2 = jhu; vij2 + ku� vk2 for all u; v 2 R3:



4. Lagrange�s Barycentric Identity

1783, Sur une nouvelle proprieté du centre de gravité:

(L)
1

M

nX
k=1

mk kz � xkk
2

=

z � 1

M

nX
k=1

mkxk


2

+
1

M2

X
1�i<j�n

mimj kxi�xjk
2:

For z = 0; mk = pka
2
k and xk = yk=ak in (L) :0@ nX

k=1

pka
2
k

1A0@ nX
k=1

pkkykk2
1A

=


nX
k=1

pkakyk


2

+
X

1�i<j�n
pipjkajyi � aiyjk2:

Consequence:
nX
k=1

pkakyk


2

�

0@ nX
k=1

pka
2
k

1A0@ nX
k=1

pkkykk2
1A :



5. Mechanical Interpretation

1673 Christiaan Huygens: the parallel axis theorem,

Ix = Icom +Md2:

Equivalently (Huygens-Steiner identity),

1

M

nX
k=1

mk kx� xkk
2

= jjz� 1

M

nX
k=1

mkxkjj2+
1

M

nX
k=1

mkkxk�
1

M

nX
j=1

mjxjk2:

1765 Leonhard Euler, Theoria motus corporum solidorum
seu rigidorum.



A connection to metric geometry

Consider a triangle �ABC with side lengths a; b; c; the
centroid G , the center of the circumscribed circle O, the
center of the inscribed circle I, etc.

Lagrange�s barycentric identity (applied to the family of
vertices of the triangle, with equal weights m1 = m2 =

m3 = 1; and for the choice of x as the center of the
circumscribed circle) yields the following formula for the
radius of circumscribed circle (attributed to Leibniz):

R2 = OG2 +
1

9
(a2 + b2 + c2):

As a consequence, a2 + b2 + c2 � 9R2; with equality if
(and only if) the triangle is equilateral.

More generally, if R is the radius of the smallest ball
containing a �nite family of points x1; : : : ; xn 2 RN ;
then

1

n

0@X
i<j

kxi � xjk2
1A1=2 � R:



The formula

R2 = OI2 + 2Rr (equivalently OI2 = R(R� 2r))

was discovered independently by W. Chapple (1746) and
L. Euler (1765). It implies

2r � R;

with equality if (and only if) the triangle is equilateral.

This follows from the Huygens-Steiner identity applied to
the family of vertices of the triangle, the weights

m1 = a=(a+b+c); m2 = b=(a+b+c) and m3 = c=(a+b+c);

and for x the center of the circumscribed circle.

Basic clue: the barycenter is

1

M

nX
k=1

mkxk = I;

the center of the inscribed circle.



6. Weighted Least Squares

Given a family of points x1; :::; xn in RN and real weights
m1; :::;mn 2 R with M =

Pn
k=1 mk > 0; then

min
x2RN

nX
k=1

mk kx�xkk2 =
1

M
�
X
i<j

mimj kxi�xjk2:

The minimum is attained at one point,

xG =
1

M

nX
k=1

mkxk:

Giulio Carlo Fagnano: the existence of a point P in
the plane of a triangle ABC that minimizes the sum
PA2 + PB2 + PC2.

Carl Friedrich Gauss: the foundations of the least-squares
analysis in 1795.

1809 Theory of motion of the celestial bodies moving in
conic sections around the Sun.



7. Poincaré�s Inequality (1890)

If 
 is a bounded connected set in RN with Lipschitz
boundary, then there exists a constant C, depending only
on 
 and N; such that for every f 2 H1(
);f � 1

vol


Z


fdx


L2
� C krfkL2 :

Starting point: If � is a probability measure on a space

 and f and g are two real random variables belonging
to the space L2(�) :�Z



f2d�

��Z


g2d�

�
�
�Z


fgd�

�2
=
1

2

Z



Z


(f(x)g(y)� f(y)g(x))2 d�(x)d�(y);



Special case of smooth functions f : [0; 1] ! R that
verify the condition

R 1
0 fdx = 0 :Z 1

0
f2dx =

1

2

Z 1
0

Z 1
0
(f(x)� f(y))2 dxdy:

By taking Lagrange�s mean value theorem (with integral
remainder) we infer that

f(x) = f(y) + (x� y)
Z 1
0
f 0(tx+ (1� t)y)dt;

whence one can conclude thatZ 1
0
f2dx � 1

2

Z 1
0
f 02(s)ds:



8. The isoperimetric problem

Steiner Weierstrass

Hurwitz Wirtinger

Dido�s Problem: What is the closed curve which has the
maximum area for a given perimeter ?



If C is a simple closed smooth curve given parametrically,
with L =

R
C ds its arc length and A = �

R
C ydx the

area enclosed by C; then

L2 � 4�A;

equality holds if and only if C is a circle.

Solution: Parametrize C with constant speed L=2�: By
a translation we may also assume

R 2�
0 ydt = 0: Using

Green�s formula,

L2 � 4�A = 2�
Z 2�
0

"�
dx

dt

�2
+
�
dy

dt

�2
+ 2y

dx

dt

#
dt

= 2�
Z 2�
0

�
dx

dt
+ y

�2
dt+ 2�

Z 2�
0

"�
dy

dt

�2
� y2

#
dt:

Wilhelm Wirtinger (1904): Let f : R! R be a peri-
odic function of period 2�, which is C1 and such thatR 2�
0 fdx = 0: ThenZ 2�

0
f2dx �

Z 2�
0

f 02(s)ds

with equality if and only if f(x) = a sin(x) + b cos(x).



Proof. By Parseval�s identity,Z 2�
0

f2dx =
1X
n=1

�
a2n + b

2
n

�
and Z 2�

0
f 02dx =

1X
n=1

n
�
a2n + b

2
n

�
:



9. The uncertainty principle

Hermann Weyl, Theory of groups and Quantum Mechan-
ics, Dover, 1950: One can not jointly localize a signal in
time and frequency arbitrarily well; either one has poor
frequency localization or poor time localization.

Suppose that f(t) is a �nite energy signal with Fourier
transform F (!) and

q
jtjf(t)! 0 as jtj ! 1: Then

Dd � 1

2

where E =
R
R jf(t)j

2 dt = 1
2�

R
R jF (!)j

2 d!;

d2 =
1

E

Z
R
t2 jf(t)j2 dt and D2 = 1

2�E

Z
R
!2 jF (!)j2 dt:



Moreover, equality holds only if f(t) has the form

f(t) = Ce��t
2
:

Proof. Suppose that f is real. Notice that����Z 1�1 tf(t)f 0(t)dt
����2 � Z 1

�1
t2f2(t)dt

Z 1
�1

f 02(t)dt

andZ 1
�1

tf(t)f 0(t)dt = t
f2(t)

2

�����
1

�1
�
Z 1
�1

1

2
f2(t)dt = �1

2
E:

By Parseval�s Theorem,Z 1
�1

f 02(t)dt =
1

2�

Z 1
�1

!2 jF (!)j2 d!:

Therefore
1

4
E2 � d2E �D2E;

that is,
1

2
� dD:



10. CBS Inequality is just a consequence of Law of
Cosine

For every two nonzero vectors x and y in a real inner
product space H; xkxk � y

kyk


2

= 2� 2 hx; yi
kxk kyk

:



11. Convexity

J.L.W.V. Jensen O. Hölder

O. Hölder (1889): Assume m � f 00 �M: Then there is
� 2 [m;M ] such that

nX
k=1

�kf(xk)�f

0@ nX
k=1

�kxk

1A = 1

4
�

nX
jJ=1

nX
k=1

�j�k(xj�xk)2:

for all x1; x2; :::; ; xn 2 [a; b] and all �1; �2; :::; �n 2
[0; 1] with

P
�k = 1:

J. L. W. V. Jensen (1906): the general case of convex
functions.



12. The classical Hermite-Hadamard inequality

Ch. Hermite J. Hadamard

If f : [a; b]! R is convex,

f

�
a+ b

2

�
� 1

b� a

Z b
a
f(x)dx � f(a) + f(b)

2
:

Each inequality characterizes convexity.

Equality only for a¢ ne functions.



The Hermite-Hadamard double inequality follows from
two identities related to trapezoidal and midpoint rules
of quadratures:

1

b� a

Z b
a
f(x)dx =

f(a) + f(b)

2

� 1

b� a

Z b
a

(b� x)(x� a)
2

f 00(x)dx

and

1

b� a

Z b
a
f(x)dx = f

�
a+ b

2

�
+

1

b� a

Z b
a
'(x)f 00(x)dx;

where

'(x) =

8<:
(x�a)2
2 if x 2 [a; (a+ b)=2]

(b�x)2
2 if x 2 [(a+ b)=2; b]:

Higher order rules [1] yield Hermite-Hadamard type in-
equalities for convex functions of n-th order.



Positive Polynomials and Sums of Squares

D. Hilbert

Every nonnegative polynomial of a single variable can be
expressed as a sum of squares (sos) of polynomials.

Basic idea:

c2
rY
j=1

(t�tj)2mj
sY
k=1

(t� (�k + i�k)) (t� (�k � i�k))

= Q2(t)
sY
k=1

((t� �k)2 + �2k) = R
2(t) + S2(t);

via Fibonacci�s identity.



The several variables case

Special cases when nonnegative polynomials are sums of
squares

Hilbert (1888): quadratic polynomials in any number of
variables; quartic polynomial in 2 variables.

A. Hurwitz (1891):

x2n1 + x2n2 + � � �+ x2nn
n

�x21x22 � � �x2n = sum of squares.

For example:

x41 + x
4
2 + x

4
3 + x

4
4

4
� x1x2x3x4

=

�
x21 � x22

�2
+ (x23 � x24)2

4
+
(x1x2 � x3x4)2

2
:

P. E. Frenkel and P. Horvath, Minkowski�s inequality and
sums of squares, ArXiv 1206.5783v2 /4 January 2013



13. Hilbert�s Seventeenth Problem

Given a multivariate polynomial that takes only nonnega-
tive values over the reals, can it be represented as a sum
of squares of rational functions? Yes, Artin (1927)

Motzkin (1966) :

1 + x4y2 + x2y4 � 3x2y2

=

 
x2y(x2 + y2 � 2)

x2 + y2

!2
+

 
xy2(x2 + y2 � 2)

x2 + y2

!2

+

 
xy(x2 + y2 � 2)

x2 + y2

!2
+

 
x2 � y2

x2 + y2

!2
:



14. Two Open Problems

Is every inequality the consequence of
an identity?

Find new identities and their
associated inequalities.



15. A Generalization of Lagrange�s Identity

Lemma 1. (N&Stephan [14], [15]) Let I be an interval
of R endowed with a discrete measure � = Pn

k=1 pk�xk;

whose weights pk are all nonzero and sum to 1. We
assume that the barycenter of �;

b� =
nX
k=1

pkxk;

belongs to In fx1; x2; :::; xng. Then every function f :
I ! R veri�es the identity
nX
k=1

pkf(xk)

= f (b�)+
X

1�k<j�n
pkpj

�
s(xk)� s(xj)

� �
xk � xj

�
;

where

s(x) =
f(x)� f(b�)
x� b�

for x 2 In fb�g

is the slope function of the segment joining the points of
abscissas x and b�:



16. A Math. Olympiad Problem

Let a; b; c; d � 0 and a+ b+ c+ d = 4: ShowX a

a3 + 8
� 4

9
:

Partial solution. The function F (x) = x
x3+8

is con-
cave for x 2 [0; 2]: According to Jensen�s inequality,
for a; b; c; d 2 [0; 2] and a+ b+ c+ d = 4 , we have

1

4

�X a

a3 + 8

�
�

a+b+c+d
4�

a+b+c+d
4

�3
+ 8

=
1

9
:

5 4 3 2 1 1 2 3 4 5

0.2

0.2

0.4

x

y



Theorem 1. (Jensen�s Inequality for Mixed Convex Func-
tions). Assume that all weights pk are nonnegative. If
s(x) is increasing, then

nX
k=1

pkf(xk) � f (b�) ;

while if s(x) is decreasing, then this inequality works in
the reversed direction.

Solution to the problem. Apply Theorem 1 to the func-

tion F and the probability measure � = 1
n

nP
k=1

�xk; where

x1; x2; :::; ; xn > �2 and 1
n

nP
k=1

xk = 1: In this case

b� = 1 and the slope function

s(x) =
F (x)� F (1)

x� 1
=
8� x� x2

9(8 + x3)
:

is decreasing on (�2;1): Therefore

max
1

n

nX
k=1

F (xk) =
1

9
:



Other examples:

(a) Suppose that x1; :::; xn > 0 and 1n
nP
k=1

xk = e: Then

nQ
k=1

x
1=xk
k � e1=e:

(b) Kostant-Michor inequality (see [3]): Suppose that
x1; :::; xn are real numbers such that

1
n

Pn
k=1 xk �

0: Then
nX
k=1

xke
xk � 2

n

nX
k=1

x2k:



17. The Several Variables Case

First Step: Adapt to several variables what we did in R:

C a subset of the Euclidean space RN endowed with a
real measure � =

Pn
i=1 pi�xi whose weights pi are all

nonzero and sum up to 1. The barycenter of �;

b� =
nX
i=1

pixi;

is supposed to be in Cn fx1; :::; xng :

Theorem 2. (N&Stephan [14], [15]) Under the above as-
sumptions on C and �; every function f : C ! R veri�es
the following extension of Lagrange�s identity:
(GL)
nX
i=1

pif(xi) = f (b�)+
X
i<j

pipj
D
s(xi)� s(xj); xi � xj

E
;

where

s(x) =
f(x)� f(b�)
kx� b�k

� x� b�
kx� b�k

for x 2 Cn fb�g :



When f is a continuously di¤erentiable function de�ned
on a convex subset C of RN , one can state the identity
(GL) in terms of gradients:

(SGL)
nX
i=1

pif(xi) = f (b�)

+
X
i<j

pipj

Z 1
0
hrf(Pi(t))�rf(Pj(t)); xi � xjidt;

where Pi(t) = txi + (1� t)b�:

Note: (L) is the particular case where f(x) = 1
2 kxk

2 ;

x 2 RN : Indeed,

rf(x) = x and r2f(x) = In:

Example 1. In the Euclidean spaces,

6
�
kx1k2 + kx2k2 + kx3k2

�
+ 2 kx1 + x2 + x3k2

= 3
�
kx1 + x2k2 + kx2 + x3k2 + kx3 + x1k2

�
+

X
1�i<j�3

xi � xj2 :



A consequence is the inequality

kx1k2 + kx2k2 + kx3k2

3
+

x1 + x2 + x33

2
� 2

3

 x1 + x22

2 + x2 + x32

2 + x3 + x12

2
!
;

which illustrates the phenomenon of (2D)-convexity. See
Mihail Bencze, C. P. Niculescu and Florin Popovici [2].

Example 2. (Hlawka�Identity) In Euclidean spaces,

kxk2 + kyk2 + kzk2 + kx+ y + zk2

= kx+ yk2 + ky + zk2 + kz + xk2 ;

Example 3. Discrepancy between the weighted harmonic

mean H =
�Pn

i=1
pi
xi

��1
and the weighted arithmetic

mean A =
Pn
i=1 pixi :

1 +
�2�

M2
� A

H
� 1 +

�2�

m2
:

where

�2� =
X

1�i<j�n
pipj(xi � xj)2

represents the variance of the given family.



18. A Second Generalization

Embedding Jensen�s Inequality into an identity:

Theorem 3. (N&Stephan [15]). Suppose that K is a
Borel measurable convex subset of RN (or more gen-
erally of a real Hilbert space), endowed with a real Borel
measure � such that �(K) = 1 and b� 2 K: Then for
every function f : K ! R of class C2 we have the
identity

f(b�)+
1

2

Z
K

Z
K
hrf(x)�rf(y); x� yid�(x)d�(y)

=
Z
K
f(x)d�(x)

+
Z
K

Z 1
0
(1�t)hr2f(x+t(b��x)) (b� � x) ; b��xidtd�(x);

provided that all integrals are legitimate.

In the particular case where f(x) = 1
2 kxk

2 ; x 2 RN ;
we recover the identity (L).



Theorem 4. (N&Stephan [15]). Suppose thatK is a com-

pact convex subset of the Euclidean space RN , endowed
with a Borel probability measure �; and f is a convex

function of class C1, de�ned on a neighborhood of K:

Then

1

2

Z
K

Z
K
hrf(x)�rf(y); x� yid�(x)d�(y)

�
Z
U
f(x)d�(x)� f(b�) � 0:

This provides a converse for each instance of Jensen�s

inequality.

Example: Hardy�s inequality (1925) asserts that if f is

nonnegative and p-integrable on (0;1); with p > 1;

thenZ 1
0

�
1

x

Z x
0
f(y)dy

�p
dx �

 
p

p� 1

!p Z 1
0
fp(x)dx:

Extension by Y. Bicheng, Z. Zhuohua and L. Debnath

(see also Persson and Samko. See [18], Theorem 2.1):



Theorem 5. Suppose that h is a nonnegative and locally
integrable function on (0; `) (where 0 < ` � 1) and
p 2 (�1; 0) [ [1;1): ThenZ `

0

�
1

x

Z x
0
h(t) dt

�p dx
x
�
Z `
0
hp(x)

�
1� x

`

�
dx

x
:

Theorem 4 yields the following converse to Theorem 5:

Theorem 6. If u : (0;1) ! R is a convex function of
class C1 and h : (0; `)! R is a nonnegative integrable
function, thenZ `
0
u

�
1

x

Z x
0
h(t)dt

�
dx

x
+

1

2

Z `
0
(
1

x2

Z x
0

Z x
0

�
u0 (h(s))� u0(h(t))

�
(h(s)� h(t)) dsdt)dx

x

�
Z `
0
u(h(x))

�
1� x

`

�
dx

x
:
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