Inequalities and ldentities.

A Journey into Mathematics

Constantin P. Niculescu

(

University of Craiova, Department of Mathematics

Mathematical Inequalities and Applications 2015,
Mostar, November 11-15, 2015.

1



1. Augustin-Louis Cauchy, 1821

COURS D'ANALYSE

L'ECOLE ROYALE POLYTECHNIQUE;

Pan M. Avcusmy-Lowi: CAUCHY,

ok Profm

1" PARTIE. ANALYSE ALGEBRIGUE.

DE L'IMPRIMERIE ROYALE.

Chez Deacae fréres, Libraices du Rei ¢t de la Bibliothéque du Roi,
rus Serpents, 12 %, :

1821

Page 456, formula (31):
- 2 < 2
> ai || 20
1=1 1=1

2
n
= Z a;b; + Z (aibj — ajbz-)2.
=1 1<i<i<n

Consequence: Cauchy-Buniakovski-Schwarz Inequality and
its equality case.



2. History

A particular form of Lagrange's identity: Fibonacci in
1225 in his Liber Quadratorum (Book of Squares):

(a3 + a3) (b3 + b3) = (ab1 + azb2)® + (arb — azby)?
= (a1b1 — agb2)® + (arb2 + azb1)?.

For integer values of the variables, this means that the
product of sums of squares is again a sum of squares (a
fact that originates to Book 13, Problem 19, in Arith-
metica of Diophantus of Alexandria):

(12 + 42)(2% + 7%) = 30% + 1% = 262 + 15°.

Modern proof via complex number multiplication:

lag + dag|? |by 4 iba|* = |(ay + iap) (by + ib2)|?.

Brahmagupta (598-668): (a2 — Na3) (b2 — Nb3) equals

(a1by + Nagbp)? — N (arby + agby)?

Bhaskara Il in 1150 solved Pell’s equation 22— Ny2 = 1.



3. Lagrange’s Algebraic lIdentity

1773, Quelques problémes sur les pyramides triangulaires,
p. 663, lines 6-8:

(59 (29)

2
— (Z a'ibi) -+ Z (aibj — CijZ’)Z.
1=1

1<i<j<3
In other words

lull [0)1? = [{u, 0)|° + [lu x o[> for all u,v € R,



4. Lagrange’s Barycentric ldentity

1783, Sur une nouvelle proprieté du centre de gravité:

1 5
) — _
(£) 37 2 millz =l
2
Ly LS P
= || — — mirpIi —2 mzmj ati—acj .
M = M 1<i<j<n

For 2 =0, mj = pka% and zj, = yi./ay in (L) :

(épkai) (épuyknz)

2
n
=3 pragy| + > pipjllajyi — ay;ll*.
k=1 1<i<j<n
Consequence:
> oraryr| < | D praz | | D prlluell] -




5. Mechanical Interpretation

1673 Christiaan Huygens: the parallel axis theorem,

Iaz — Icom + Md2-

Equivalently (Huygens-Steiner identity),
1 Z 9
3 my e o
k=1

= ||z— mTr||+ mp||x,— m;x;||c.
M= M3 M=

1765 Leonhard Euler, Theoria motus corporum solidorum

seu rigidorum.



A connection to metric geometry

Consider a triangle AABC with side lengths a, b, c, the
centroid (& , the center of the circumscribed circle O, the
center of the inscribed circle I, etc.

Lagrange's barycentric identity (applied to the family of
vertices of the triangle, with equal weights m1 = mo =
m3 = 1, and for the choice of x as the center of the
circumscribed circle) yields the following formula for the
radius of circumscribed circle (attributed to Leibniz):

1
R?> = OG? + §(a2 + b + ?).

As a consequence, a? + b2 + ¢? < 9R?, with equality if
(and only if) the triangle is equilateral.

More generally, if R is the radius of the smallest ball
containing a finite family of points z1,...,zn € RY,
then



The formula
R? = OI? + 2Rr (equivalently OI? = R(R — 2r))

was discovered independently by W. Chapple (1746) and
L. Euler (1765). It implies

2r < R,

with equality if (and only if) the triangle is equilateral.

This follows from the Huygens-Steiner identity applied to
the family of vertices of the triangle, the weights

m1 = a/(a+b+c), my = b/(a+b+c) and m3z = ¢/(a+b+c),

and for x the center of the circumscribed circle.

Basic clue: the barycenter is

1

n
— Z mk:ck:I,
Mk:l

the center of the inscribed circle.



6. Weighted Least Squares

Given a family of points z1, ..., zn in RY and real weights
mi,...,Mp € Rwith M =377, my, > 0, then
n

1
: 2 2
min my ||z —z]|© = —- > mymj|lz; —x;]|°.

The minimum Is attained at one point,

1 mn
ZL‘G — M Z mkajk.
k=1

Giulio Carlo Fagnano: the existence of a point P in
the plane of a triangle ABC that minimizes the sum
PA? 4 PB? + PC?.

Carl Friedrich Gauss: the foundations of the least-squares
analysis in 1795.

1809 Theory of motion of the celestial bodies moving in
conic sections around the Sun.



7. Poincaré’s Inequality (1890)

If Qis a bounded connected set in RYY with Lipschitz

boundary, then there exists a constant C', depending only
on Q and N, such that for every f € H(Q),

1
d
volS2 /Q / w‘

Starting point: If p is a probability measure on a space
Q and f and g are two real random variables belonging
to the space L(u) :

(Jr7a) (fpsian) = (o)

:%ngﬂ@mw—ﬂmmmfwmmmw,

= LSOV



Special case of smooth functions f : [0,1] — R that
verify the condition fol fdr =0:

[y 2o = [ [ (#@) = £@)2 dady,

By taking Lagrange's mean value theorem (with integral
remainder) we infer that

F@) = 1) + (@ ) [ 5w+ (1~ ),

whence one can conclude that

L2 Lt on
/Ofdaz'SE/Of (s)ds.



8. The isoperimetric problem

Steiner Weierstrass

Hurwitz Wirtinger

Dido’s Problem: What is the closed curve which has the
maximum area for a given perimeter ?



If C is a simple closed smooth curve given parametrically,
with L = [-ds its arc length and A = — - ydz the
area enclosed by C, then

L? > 41 A;
equality holds if and only if C is a circle.
Solution: Parametrize C with constant speed L/27. By

a translation we may also assumefo27T ydt = 0. Using
Green's formula,

2r [ rdx\?  /dy\? dx
1% —4rA=2r [ <_) (_) 20" | at
T [ at) T \at) TV

27'(' dm 2 27'(' dy 2
— 2 / [— ] dt + 2 / (—) — 2| dt.
Tl lae TV T [ at) Y

Wilhelm Wirtinger (1904): Let f : R — R be a peri-
odic function of period 27, which is C1 and such that
f027r fdx = 0. Then

21 21
A fzd:c§/0 F2(s)ds

with equality if and only if f(x) = asin(x) 4+ bcos(x).



Proof. By Parseval’s identity,

27 oo

27 2 | 42
0 Jodx nzzjl (an+ n)
and
27 o0

Fdx = Zn(a%—kb%).

n=1

0



9. The uncertainty principle

Hermann Weyl, Theory of groups and Quantum Mechan-
ics, Dover, 1950: One can not jointly localize a signal in
time and frequency arbitrarily well; either one has poor
frequency localization or poor time localization.

Suppose that f(t) is a finite energy signal with Fourier
transform F'(w) and +/|t|f(t) — 0 as |t| — oo. Then

Dd >

N | =

where E = [ |f(t)[* dt = 5 [ | F(w)|* dw,

1 1
& = E/th £(£)[2dt and D? = 27r—E/Rw2 F(w)[2 dt.



Moreover, equality holds only if f(¢) has the form

f(t) = Cet,

Proof. Suppose that f is real. Notice that

[~ ool < [* 2ewa [~ o

and

f2( t)|™

—O0

/_ tF(8)f (¢)dt = t7——= /_O:O %fZ(t)dt - —%E.

By Parseval's Theorem,

oo 1 o0
/_oof2(t)dt — Z/_oo W2 |F(w))? dw.

Therefore

1
ZE2 < d°E x D°E,

that is,

N | =
VA
oy
.



10. CBS Inequality is just a consequence of Law of

Cosine

ci=a’+b?-2ab Cos C

For every two nonzero vectors x and y in a real inner
product space H,

2
L Y

Izl iyl

5y \TY)
|| ||yl




11. Convexity

J.L.W.V. Jensen O. Holder

O. Hoalder (1889): Assume m < f” < M. Then there is
p € [m, M] such that

n n 1 n n
kz_:l A (@g)—f (;l )‘kxk) =M SST Na(zj—ap)?.

jJ=1k=1

for all x1,x2,...,,xzn € [a,b] and all A1, Ao,..., An €
[0, 1] with >~ Ar = 1.

J. L. W. V. Jensen (1906): the general case of convex
functions.



12. The classical Hermite-Hadamard inequality

Ch. Hermite J. Hadamard

If f:[a,b] — R is convex,

(5 22, [ e < OO

Each inequality characterizes convexity.

Equality only for affine functions.



The Hermite-Hadamard double inequality follows from
two identities related to trapezoidal and midpoint rules
of quadratures:

1 f(a) + £(b)
/ f(@)de = =22

b—a
_bia[f®_$§m_ahﬂﬁwx

and

@ =5 () [ el@) e

where

B (z—a) if x € [a,(a+b)/2]
SO(w)_{(’”ﬁ) if z € [(a +b)/2,0].

Higher order rules [1] yield Hermite-Hadamard type in-
equalities for convex functions of n-th order.



Positive Polynomials and Sums of Squares

D. Hilbert

Every nonnegative polynomial of a single variable can be
expressed as a sum of squares (sos) of polynomials.

Basic idea:

¢ TT (t—t5)>™ 1T (¢ = (o +iBp)) (¢ — (g — iBs))
j=1 k=1

— Q2(1) T ((t — ) + B2) = R2(t) + (1),
k=1

via Fibonacci's identity.



The several variables case

Special cases when nonnegative polynomials are sums of
squares

Hilbert (1888): quadratic polynomials in any number of
variables; quartic polynomial in 2 variables.

A. Hurwitz (1891):

st i 5 > c
—x{T5 - - - x5 = sum of squares.

n
For example:

xi‘—l—x%—l—x%—l—xﬁ

A — X1THT3T4
2
(x% - x%) + (25 — 23)° (z120 — 324)°
N 4 i 2 '

P. E. Frenkel and P. Horvath, Minkowski’s inequality and
sums of squares, ArXiv 1206.5783v2 /4 January 2013



13. Hilbert’s Seventeenth Problem

Given a multivariate polynomial that takes only nonnega-
tive values over the reals, can it be represented as a sum
of squares of rational functions? Yes, Artin (1927)

Motzkin (1966)

14 2%2 + 22y — 3022

_ <$2y(w2 +y? — 2)>2 n <$y2(w2 +y? — 2)>2

$2—|—y2 $2—|—y2

2 2
N a:y(a:z - y2 — 2) N 2 — y2
CBZ + y2 332 + y2 )




14. Two Open Problems

Is every inequality the consequence of
an identity?

Find new identities and their
assoclated inequalities.



15. A Generalization of Lagrange’s ldentity

Lemma 1. (N&Stephan [14], [15]) Let I be an interval
of R endowed with a discrete measure p = >3’ POy,
whose weights p;. are all nonzero and sum to 1. We
assume that the barycenter of pu,

n
bu= > PrTk,
k=1

belongs to I\ {x1, x>, ...,xn}. Then every function f :
I — R verifies the identity

> pef(zg)
k=1
= f+ Y ey (s(ar) — s(a)) (wk — 25)
1<k<j<n
where
f(z) — f(bu)

s(x) =

Is the slope function of the segment joining the points of

for x € I\ {bu}
L= Ou

abscissas x and bu-



16. A Math. Olympiad Problem

Let a,b,c,d > 0and a+ b+ c+ d = 4. Show

a 4
< —,
Za?’—|—8_9

Partial solution. The function F(z) = 33333—8

cave for x € [0,2]. According to Jensen's inequality,
for a,b,c,d € [0,2] and a + b+ c+ d =4, we have

IS con-

E(Z a > _ a+bic+j _ 1
4 a3+ 8 (a—kb?‘lr—c—l—d) 4+ 8 9




Theorem 1. (Jensen's Inequality for Mixed Convex Func-
tions). Assume that all weights p;. are nonnegative. If
s(x) is increasing, then

> pef(zg) > f(bu),

k=1
while if s(x) is decreasing, then this inequality works in
the reversed direction.

Solution to the problem. Apply Theorem 1 to the func-

n
tion I and the probability measure y = % > Oz,, where
k=1

n

x1,x9,...,,Tn > —2 and % >, xp. = 1. In this case
k=1

by, = 1 and the slope function

F(z)— F(1) 8—x—a?

) =TT T e )

is decreasing on (—2, c0). Therefore



Other examples:

n
(a) Suppose that z1, ...,y > 0 and % > xp = e. Then
k=1

mn
kljl xllc/xk < elle.

(b) Kostant-Michor inequality (see [3]): Suppose that

x1, ..., Tn are real numbers such that 1 1Tk =

n
0. Then

& T 2 C 2
> g > 23 af



17. The Several Variables Case

First Step: Adapt to several variables what we did in R.

C' a subset of the Euclidean space R¥Y endowed with a
real measure p = > ' 1 p;0z, whose weights p; are all
nonzero and sum up to 1. The barycenter of wu,

n
b,u — Z Pidy;
1=1
is supposed to be in C\ {z1,...,zn}.

Theorem 2. (N&Stephan [14], [15]) Under the above as-
sumptions on C' and ., every function f : C — R verifies
the following extension of Lagrange’s identity:

(GL)
> pif(zi) = £ (bu)+Y pipj (s(z:) — s(x;), 3 — 35,
1=1

1<J

where

s(z)

:f(x)—f(bu). T — by

forx € C\ {b,}.
|z — byl |z — byl g



When f is a continuously differentiable function defined
on a convex subset C' of RV , one can state the identity
(GL) in terms of gradients:

(SGL) z pif(@s) = f (bu)

£ s [ (VID) ~ VAPI0), 0 — )i,

1<g
where P;(t) = tx; + (1 — t)b'u.

Note: (L) is the particular case where f(x) = %||ac||2,
z € RY. Indeed,
Vi(z)=z and V2f(z)=In.
Example 1. In the Euclidean spaces,
6 (llz1l1? + ll2ll + la3l|?) + 2lwg + w2 + 23|
=3 (|lex + 22l + w2 + 23| + [las + 21 )

+ >

1<i<j<3

oi — |



A consequence is the inequality

2 2 2
|z1||* + [|z2||° + |23 N H5’31 + zp + 563H2

3 3
5 2 2 2
HEn R e R e )
3 2 2 2

which illustrates the phenomenon of (2D)-convexity. See
Mihail Bencze, C. P. Niculescu and Florin Popovici [2].

Example 2. (Hlawka' Identity) In Euclidean spaces,

2
)%+ lyl|? + 112]1° + l|lz 4+ y + 2]
= ||z +yl|2 + [y + 2] + ||z + =],

Example 3. Discrepancy between the weighted harmonic
A —1
mean H = ( n &> and the weighted arithmetic

mean A = ' 1 p;x;

2 2
o A o
B o K
T4 < <144,
where
2 2
O-M — pzp](xz .CU])
1<i<y<n

represents the variance of the given family.



18. A Second Generalization

Embedding Jensen’s Inequality into an identity:

Theorem 3. (N&Stephan [15]). Suppose that K is a
Borel measurable convex subset of RY (or more gen-
erally of a real Hilbert space), endowed with a real Borel
measure p such that u(K) = 1 and b, € K. Then for
every function f : K — R of class C? we have the
identity

Fou) 4 [ [ (VF() =V F(w), — )dpu(e)di(y)
= [ f@)du()

t [ [ a2 () (b — ) b dtdu(z),

provided that all integrals are legitimate.

In the particular case where f(x) = %||ac||2, r € RY,
we recover the identity (L).



Theorem 4. (N&Stephan [15]). Suppose that K is a com-
pact convex subset of the Euclidean space RY, endowed
with a Borel probability measure 1, and f is a convex

function of class C, defined on a neighborhood of K.
Then

% /K /K<v f(z) = VI(y),z — yhdp(z)du(y)
> [ f@)du(e) = £(bu) > 0.

This provides a converse for each instance of Jensen's

inequality.

Example: Hardy's inequality (1925) asserts that if f is
nonnegative and p-integrable on (0,00), with p > 1,
then

[7C [ ray)” ae < (ﬁ)p [7 iy

Extension by Y. Bicheng, Z. Zhuohua and L. Debnath

(see also Persson and Samko. See [18], Theorem 2.1):



Theorem 5. Suppose that h is a nonnegative and locally
integrable function on (0,¢) (where 0 < £ < o0) and
p € (—00,0)U[1,00). Then

b G roa) < e (1-5)F

Theorem 4 yields the following converse to Theorem 5:

Theorem 6. If u : (0,00) — R is a convex function of
class C1 and h : (0,¢) — R is a nonnegative integrable
function, then

[ o)

L [ (0 ) — o 0) () — () sy

> / u(h(z)) <1 — —) df
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